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We introduce a new technique to model spherical geophysical fluid dynamics in the
terrestrial laboratory. The local vertical projection of planetary vorticity, f, varies with
latitude on a rotating spherical planet and allows an important class of waves in large-
scale atmospheric and oceanic flows. These Rossby waves have been extensively
studied in the laboratory for middle and polar latitudes. At the equator f changes sign
where gravity is perpendicular to the planetary rotation. This geometry has made
laboratory studies of geophysical fluid dynamics near the equator very limited. We use
ferrofluid and static magnetic fields to generate nearly spherical geopotentials in a
rotating laboratory experiment. This system is the laboratory analogue of those large-
scale atmospheric and oceanic flows whose horizontal motions are governed by the
Laplace tidal equations. As the rotation rate in such a system increases, waves are
trapped to latitudes near the equator and the dynamics can be formulated on the
equatorial β-plane. This transition from planetary modes to equatorially trapped
modes as the rotation rate increases is observed in the experiments. The equatorial β-
plane solutions of non-dispersive Kelvin waves propagating eastward and non-
dispersive Rossby waves propagating westward at low frequency are observed in the
limit of rotation fast compared to gravity wave speed.

1. Introduction

Large-scale motions of both the atmosphere and ocean are nearly in vertical
hydrostatic balance and horizontal geostrophic balance. The equator is a singular
latitude where geostrophy breaks down since the vertical planetary vorticity there goes
to zero. This change in sign of the Coriolis parameter with latitude gives rise to well-
known classes of waves trapped to latitudes near the equator (see for example Gill
1982, chap. 11 or Philander 1990, chap. 3). These waves in both the atmosphere and
ocean and their nonlinear interactions with mean flows and each other appear to play
an important role in the Earth’s climate system through the El Nin4 o–Southern
Oscillation phenomena.

Motivated by the early work of G. I. Taylor (1921), the understanding of much of
geophysical fluid dynamics has progressed by a cross-fertilization between analytic,
laboratory, and now numerical studies. Analytic equatorial β-plane and equatorial or
fully spherical numerical models of the equatorial latitudes in both the ocean and
atmosphere have successfully simulated many of the observed flows in the real Earth
system (Philander 1990). As usual, such models are particularly adept at linear or
weakly nonlinear flows. Laboratory studies of equatorial geophysical fluid dynamics
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F 1. Various configurations of laboratory experiments relating to the β-effect, with
equipotential surfaces dashed and fluid interfaces or free surfaces, solid lines. (a) Homogeneous fluid,
sloping bottom and rigid top to give mid-latitude β. (b) Homogeneous fluid, horizontal bottom and
parabolic free surface to give polar β. (c) Two immiscible fluids (ρ

#
" ρ

"
), horizontal bottom, rigid

parabolic lid of twice the fluid interface curvature to give baroclinic polar β. (d ) Two fluids (ρ
#
" ρ

"
),

sloping bottom and top to give mid-latitude baroclinic β. (e) Weak stratification (dashed lines) and
extremely fast rotation to give equatorial f-plane. ( f ) Continuous stratification (dashed lines), flat
bottom and free surface has no internal potential vorticity gradient (bold vertical columns all have
the same height) so only the barotropic mode sees β as in (b) rather than a spectrum of internal
baroclinic modes.

have been extremely limited. In particular, generation of a gravitational body force
which is steady and perpendicular to the rotation vector in the rotating coordinate
system has proved difficult, and generation of variations of the planetary vorticity with
latitude in such a system, i.e. a β-plane, even more so.

Many laboratory studies of large-scale waves in rotating systems have been
presented for mid-latitude and polar β-planes in one or two layers using topographic
β-planes. The rotation, Ω, and gravitational acceleration, g, vectors are made parallel
to avoid oscillatory gravity in the rotating reference frame. This orientation requires
that top and}or bottom topography or free-surface curvature be used to simulate
a planetary vorticity gradient and therefore β via vortex stretching. Thus a gradient of
potential vorticity within layers of constant density is generated by spatial variations
in the depth of the layer rather than by variations in the planetary vorticity. Figure 1
shows some example geometries : (a) uniform-density barotropic Rossby waves in a
‘sliced cylinder’ or channel with a sloping bottom (Ibbetson & Phillips 1967;
Greenspan 1968) ; (b) again uniform-density Rossby wave dynamics, and induced
mean circulation using the paraboloidal free surface and flat bottom to provide a
potential vorticity gradient (a ‘polar β-plane’, Whitehead 1975; Colin de Verdiere
1978), or source–sink-driven circulations in radial pie-shaped sections of such a
cylinder with a free surface (Stommel, Arons & Faller 1958) ; (c) two layers of differing
density, baroclinic wave dynamics and transition to chaos using a paraboloidal upper
and flat lower boundary (Hart 1972; Ohlsen & Hart 1989) ; and (d ) a two-layer density
field and sloping plane upper and lower boundaries (Griffiths & Cornillon 1994).

When continuous density stratification is present in terrestrial laboratory exper-



Studies of equatorially trapped wa�es using ferrofluid 37

iments, the mean state involves surfaces of constant pressure, density, and
geopotential, Φ, which all coincide. Thus

Φ¯ gz®"

#
Ω#r#, (1)

where Ω3 rΩr is the experiment rotation rate, r is radial distance from the rotation
axis, g is terrestrial gravity magnitude, and z is the local vertical coordinate. Assuming
incompressibility, the potential vorticity, q, is

q¯
(2Ωω)[¡ρ

ρ
, (2)

where ω¯¡¬u is the relative vorticity, u is the velocity, and ρ is the density. The
crucial limitation of the laboratory system is that the mean state field of q,

qa ¯
2Ω[¡ρ

ρ
, (3)

is uniform in the absence of mean currents, i.e. qa is proportional to 2Ω}h where h is the
z-separation of equipotential surfaces (figure 1 f ). Hence, neither baroclinic Rossby-
wave dynamics, nor internal Sverdrup balance is possible.

A very limited set of equatorial flows has been modelled in the laboratory.
Convection in very rapidly rotating cylindrical annuli (figure 1e) and spherical shells
has been studied using centripetal acceleration to dominate terrestrial gravity (Carrigan
& Busse 1983; Azouni, Bolton & Busse 1986). Their resultant ‘gravity ’ is everywhere
nearly perpendicular to the rotation vector to give near-equatorial dynamics. With
respect to baroclinic flows this is an ‘equatorial f-plane’ because, again, the potential
vorticity of the mean state is uniform on density surfaces. Barotropic motions (here
influenced by sloping end caps, or spherical-shell geometry) see a β-effect, yet it is
negative in the equatorial zone where thickness, measured parallel to Ω, decreases
equatorward (poleward of the circumscribing cylinder in a spherical annulus, the
thickness increases equatorward). These experiments have verified predictions of
models of buoyancy-driven flows in giant-planet and stellar atmospheres and cores.

Some aspects of the barotropic oceanic general circulation in basins at various
latitudes including the equator have been simulated in the laboratory using a rotating
spherical shell of homogeneous fluid (Baker & Robinson 1969). Their model basin
rigidly enclosed the fluid to eliminate terrestrial gravity from the dynamics, and flow
was driven by differential rotation of one of the spherical shells. They observed
subtropical gyre-like flow including Sverdrup flow, western boundary currents, and an
undercurrent on the equator. In such a homogeneous fluid, strong rotation leads to
Taylor–Proudman flows with fluid moving in columns parallel to Ω. Buoyancy effects
so strongly inhibit the horizontal component of Ω in stratified oceans and atmospheres
that this rigid-column flow is not likely to be relevant. Terrestrial gravity required that
both these laboratory flows have rigid lids and small or no vertical density gradient in
order to ensure that the dominant body force is perpendicular to the rotation vector.

It is possible to eliminate terrestrial gravity altogether by placing an experiment in
free-fall or Earth orbit. Convection in a rotating hemispherical shell was studied by
Hart, Glatzmaier & Toomre (1986) aboard Spacelab 3 on the space shuttle Challenger.
A strong electric field across the shell gave a radial body force in the dielectric fluid.
Flow was forced by radial and latitudinal temperature gradients and a ‘ laboratory’
model of giant-planet and stellar convection dynamics was realized. The geometry was
a hemisphere with a no-slip boundary at the equator so some global but not equatorial
flows could be observed. This apparatus does model the spherical and not just β-plane
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geometry of planetary buoyancy-driven flows. In this paper, we present a related
technique involving a magnetic body force acting on ferrofluid which yields a nearly
spherical geometry. The work here is limited to a single homogenous fluid layer with
a free surface, for the study of external-mode freely propagating planetary-scale and
equatorial waves. We have produced a quasi-spherical fully stratified fluid version,
which in principle allows the extension of this work to simulations of the fully stratified
ocean and atmosphere. However, the stratified version is complicated by the presence
of both magnetic and gravitational body forces as discussed in the conclusions below,
and the full implementation of the stratified model has not yet been carried out.

Salby (1984) reviews the atmospheric observations and theory for planetary-scale
waves. Recently Delcroix, Picaut & Eldin (1991) and Chelton & Schlax (1996) report
satellite observations of Pacific sea surface height showing equatorially trapped Kelvin
and Rossby waves. These observations motivate the present study. Much of the
dynamics of large-scale horizontal wave propagation in both the stratified atmosphere
and ocean can be well modelled with reduced-gravity shallow-water equations. For
shallow-water flow on a rotating sphere, the horizontal equations are the Laplace tidal
equations. To get these equations, the traditional approximation (Phillips 1966) is
made in which two Coriolis terms are neglected, w2Ω cos θ in the x-momentum
equation and ®u2Ω cos θ in the z-momentum equation, where u, �, and w are the x-,
y-, and z-components of velocity, Ω is the planetary rotation and θ is the latitude (e.g.
Holton 1992). In doing so, one neglects moderate-aspect-ratio non-hydrostatic
motions in which fluid velocities do not vary along lines parallel with the rotation axis
(rather than being invariant in the local vertical direction). An example is the
cylindrical shear layer that can form, circumscribing the inner solid boundary. Here we
follow the traditional practice and neglect the possibility of such ‘cylindrical ’ flows,
though clearly they are possible in our experiments.

Longuet-Higgins (1968) has delineated the free-wave and forced solutions of the
Laplace tidal equations as a function of the Lamb parameter,

ε3 4Ω#R#}c#, (4)

where R is the planetary radius, and c is the shallow-water gravity wave speed,
c¯ (gh)"/#. Baroclinic waves can also be included in this formulation using an
equivalent depth, h

m
, determined by their vertical structure with wavenumber m, and

a resultant horizontal phase speed c
m

¯ (gh
m
)"/#. The important large-scale equatorial

oceanic or atmospheric flows that we would like to model in a laboratory experiment
correspond to the limit of large ε. In this limit, wave energy is trapped at latitudes near
the equator and the equations can be reformulated on an equatorial β-plane (Matsuno
1966). Barotropic ocean modes have a large phase speed of C 200 m s−" and therefore
εC 22 but baroclinic modes in the ocean have c

m
# 3 m s−" and therefore ε$ 10&.

Similarly baroclinic waves in the equatorial atmosphere with c
m

C 50 m s−" have
εC 350. In these experiments we achieve Lamb parameters from 0 (non-rotating) to
C 320.

The Lamb parameter can be used to determine the relative horizontal scale of either
midlatitude or equatorial wave disturbances compared to the planetary radius. Since
the external or internal Rossby radius, L

r
¯ c}f or c

m
}f respectively,

ε¯ (R}L
r
)#. (5)

Similarly, since the external or internal equatorial Rossby radius,

L
eq

¯ (c}β)"/#¯ (cR}2Ω)"/# or (c
m

R}2Ω)"/#,

ε¯ (R}L
eq

)%. (6)
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Thus a large Lamb parameter implies that the scale of motion of the waves becomes
small compared to the planetary radius. Physically this means that the rotation
timescale is small compared to the buoyancy timescale and the propagating waves must
balance the Coriolis acceleration with latitudinal variations in velocity and height.
These experiments demonstrate the predicted trapping of wave energy to equatorial
latitudes for increasing ε, and the characteristic wave solutions for large ε (or
equivalently, on the equatorial β-plane) are observed.

In §2 we briefly describe ferrofluids and reduce the equations of ferrohydrodynamics
to our system of vertical hydrostatic and horizontal geostrophic balance. The
apparatus is also described along with our method to eliminate terrestrial gravity from
the wave dynamics. In §3 the experiment is scaled to the geophysical flows of interest.
The solutions to the Laplace tidal equation and their transition to the equatorial β-
plane are reviewed and compared to the experiments for increasing Lamb parameter.
In §4 the observations of equatorially trapped waves are reported and compared to the
predictions of the β-plane theory. In §5 we summarize the results of these experiments
and give a number of ideas for additional equatorial and planetary flows which could
be studied with this system.

2. Experiment description

We begin by showing that the superparamagnetic response of ferrofluids in applied
static magnetic fields can be used to generate a nearly radial body force for the study
of free-surface flows of geophysical and astrophysical interest. Ferrofluids are dilute
suspensions of magnetic dipoles, in our case magnetite particles of order 10 nm
diameter, suspended in water. A surfactant coating on the particles keeps them
separate enough that thermal motions in the fluid are sufficient to overcome gravity
and keep the dipoles in suspension. In this study the magnetic fields are stationary and
the bulk fluid motion is slow compared to the time for magnetic fluid particles to rotate
(# 10−' s). A microscopic magnetization, M, is realized as the suspended dipoles line
up in an applied magnetic field, H, and the resultant M is parallel to H. If H is uniform,
the equal but opposite force on the many north and south poles yields no net body
force. If, however, there is a gradient in applied field, there will be a systematic force
owing to the slight but persistent correlation of field strength and pole sense. This
suggests a body force proportional both to the gradient of field density and to the fluid
magnetization.

The monographs by Rosensweig (1985) and Bashtovoy, Berkovsky & Vislovich
(1988) give very detailed derivations for the equations of ferrohydrodynamics. For
rotating, incompressible flows the continuity and momentum equations become

¡[u¯ 0 (7)

and
¥u
¥t

u[¡u2Ω¬uΩ¬Ω¬x¯®
¡p*

ρ


1

ρ
M¡Hν~#ug, (8)

where p*¯ p®&H

!

ρ# 9¥(M}ρ)

¥ρ :
H,T

dH. (9)

Note that, following the discussion above, it is the gradient of the scalar, H¯ rH r, that
appears in the momentum balance. In these equations u is the velocity, p the
thermodynamic pressure, ρ the density, ν the kinematic viscosity, Ω the rotation, and
the magnetization and fields are defined by

B¯H4πM, (10)
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where H is the magnetic field, B is the magnetic induction and M is the material
magnetization. These quantities are related in the fluid by an equation of state,
M¯M(H, ρ), where again M is assumed parallel to H.

For an ideal monodisperse colloidal ferrofluid the magnetization obeys the Langevin
relation

M

M
s

¯L(α)3 coth (α)®
1

α
, (11)

where α¯
mH

kT
(12)

and m is the magnetic moment of the suspended magnetic particles, k is Boltzman’s
constant, and T is the temperature. The saturation magnetization M

s
¯ nm, where n is

the number of magnetic particles per unit volume. For a dilute suspension ferrofluid
like this one, the last term in (9) can be neglected since (as shown approximately in
figure 3b below) the magnetization increases linearly with density for constant field, H.
In other words M and ρ both increase linearly with n for H constant. Equation (9) then
becomes

p*¯ p (13)

(Rosensweig 1985; Bashtovoy et al. 1988).
Typical rare-earth permanent magnets have fields of order 3000 Gauss near their

pole surfaces, and much stronger permanent magnets or electromagnets are readily
available (up to 50000 Gauss superconducting magnets, for example). For simple
dipole shapes, the field strength falls to near zero in tens of centimetres so that
gradients of 100 Gauss cm−" are possible. For comparison, the Earth’s field is nearly
uniform on laboratory scales and of order 0.7 Gauss. Commercially available
ferrofluids have saturation magnetization, 4πM

s
, as large as 500 Gauss. Thus these

simple magnets and inexpensive ferrofluids lead to magnetic accelerations, M¡H}ρ,
which can far exceed rgr. Ferrofluid is more dense than its carrier (in this case water)
and therefore magnetic and gravitational acceleration normally act in combination. To
get a geophysically interesting radial body force, we eliminate terrestrial gravity in
favour of the magnetic force alone.

The experiment geometry is shown in figure 2. A neodymium–iron–boron magnet
with a surface field of approximately 3000 Gauss is embedded in a ball of casting
plaster of radius 5.7 cm and surrounded by a layer of ferrofluid. This arrangement is
suspended by a Plexiglas rod in an oil}freon mixture inside a cylindrical container on
a rotating table. The oil mixture is immiscible with the ferrofluid and consists of Dow
Corning silicone oil of viscosity 0.05 cm# s−" along with a small amount of
dibromotetrafluoroethane (to increase the mixture density) to give a density of
1.0096 g cm−$ at T¯ 21.0 °C. The ferrofluid is a water-based suspension of magnetite
particles coated with a lignin surfactant provided by Intermagnetics General Corp.
diluted with distilled water at a volume ratio of about 1:14 (ferrofluid:water) giving
ρ¯ 1.0097 g cm−$ at T¯ 21.0 °C. The densities were then further tuned by adjusting
the temperature of the apparatus since the expansion coefficient of the oil mixture is
twice that of the ferrofluid. For the experiments of §§3 and 4, the densities are matched
to better than 0.0001 g cm−$ giving a reduced gravity of less than 0.1 cm s−#, i.e. at least
twenty times less than the magnetic acceleration at the ferrofluid surface,
M¡H}ρE 2–15 cm s−# (derived below). In the photograph of figure 2(b), the densities
are not well matched and the ferrofluid is significantly heavier than the oil mixture. The
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F 2. (a) Schematic cross-section of the axisymmetric experiment. A cylindrical tank holds a
silicone oil – dibromotetrafluoroethane mixture (ii) surrounding a ferrofluid layer (i) on a plaster ball
(whose surface is the thick circle) which surrounds a strong permanent magnet. The magnet poles are
indicated by North and South for reference but the field line orientation is not important, only the
field strength, rH r, and its gradient, ¡H. The entire apparatus rotates at angular veocity, Ω. (b) Side
view photograph of the laboratory experiment with an external magnet forcing a large-amplitude
wave.
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F 3. (a) M{ �s. magnetic field, H, for diluted ferrofluid sample measured via the modified Gouy
method and a least-squares fit to (15). (b) Fit parameter M

S
�s. density for three ferrofluid dilutions

and a linear least-squares fit.

dilution ratio for the ferrofluid is a trade-off between making the magnetic body force
and therefore the gravity wave speed small enough that the waves can be affected by
the rotation while large enough that laboratory gravity can be ignored. Using this
method, laboratory gravity is eliminated in favour of the magnetic body force.

Measurements of the field-averaged magnetization, M� , as a function of applied field,
H, using the modified Gouy method (Rosensweig 1985) for a ferrofluid sample diluted
with distilled water at about a 1:20 ratio are shown in figure 3(a) where

M� ¯
1

H&
H

!

MdH «. (14)

A cylindrical volume of ferrofluid (with one end in a constant field region and the other
in a field-free region) is weighed as a function of maximum field, H, and M� is
determined via the body force term, M¡H, in (8). The method is simple but less
accurate than direct measurements of M with a vibrating sample magnetometer, for
example. A fit to the integral of (11),

M� ¯M
s

kT

mH
log 9sinh (mH}kT )

mH}kT : , (15)

with two free parameters, M
s
and (kT}m), is shown and differs from the data due to
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measurement errors in M� at small H and to non-uniform magnetic particle size
(Chantrell, Popplewell & Charles 1978). Similar measurements of M� �s. H were made
using the pure ferrofluid and less a diluted sample (about 1.6:1). The error-bars for M�
measurements are smaller for the less- and un-diluted ferrofluid samples and even
better fits than shown in figure 3(a) are obtained. In figure 3(b) the saturation
magnetization, M

s
, obtained from the fits is plotted �s. ferrofluid density, ρ. A linear

relationship between M
s
and ρ is expected since ρ¯ ρ

w
nm

p
, where ρ

w
is the density

of the water solvent and m
p

is the magnetic particle mass, and, as mentioned above,
M

s
¯ nm. Indeed, data provided by Intermagnetics General Corp. show this linear

relationship, and figure 3(b) verifies their measured slope. It remains then to design
magnetic fields which give geophysically interesting geopotentials.

For an isothermal homogeneous ferrofluid the magnetic body force term in (8)
M¡H¯¡ !H

!
MdH«, and can therefore be absorbed into the pressure term. Without

a free surface the ferrofluid flow is unaffected by magnetic fields, just as the interior of
a homogeneous fluid is unaffected by gravity. For a basic resting state, (8) becomes

ρΩ¬Ω¬x¯®¡pM¡Hρg, (16)

and the general pressure boundary condition between a magnetic and a non-magnetic
fluid is (Rosensweig 1985)

p*p
n
¯ p

!
p

c
, (17)

where p
n
3 2πM #

n
is the magnetic normal traction in which M

n
is the normal

component of magnetization at the surface, p
!

is the static pressure on the non-
magnetic side of the interface, and p

c
is the capillary pressure. The attraction of

ferrofluid to a magnet by the orientation of its microscopic dipoles requires, in
equilibrium, a pressure gradient, and for this reason the pressure is lower on the
ferrofluid side of an interface with non-ferrofluid. Bashtovoy et al. (1988, pp. 39–40)
gives a nice explanation of this pressure jump, p

n
, as the limit of the M¡H force

changing at the free interface across an infinitesimal layer.
Since the density is uniform throughout the fluids, we subtract out, in the usual

manner, the resting pressure p
!
which balances the gravitational and centripetal forces

to get a hydrostatic equation for the magnetic fluid,

¥p
m

¥z
¯M

¥H
¥z

, (18)

where z is the local vertical defined as anti-parallel to the gradient of the magnetic field
strength, p

m
¯ p*p

n
, and p

c
is neglected assuming that surface curvatures will be

small. In the absence of laboratory gravity and the magnetic normal traction, p
n
, eqns

(18) and (13) would imply that the surfaces of constant magnetic field strength become
the geopotentials for the fluid. To account for p

n
we use the ferrohydrodynamic

Bernoulli equation (Rosensweig 1985). For this constant-density resting state, the
Bernoulli equation becomes

p®&H

!

MdH «¯ constant (19)

where (13) has been used. For two points a and b on the fluid interface, (19) implies

p
a
®&Ha

!

MdH «¯ p
b
®&Hb

!

MdH «. (20)
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F 4. (a) Calculated axisymmetric contours of rH r and gradient ¡rH r around the plaster ball.
The contour levels are 5, 100, and 2000 Gauss. The gradient arrows also scale by factors of 20
between contours. (b) The magnitude of ¡rH r as a function of latitude along the contours in (a). – – –,
Gradient along the 2000 Gauss contour |20; ——, gradient along the 100 Gauss contour; [[[,
gradient along the 5 Gauss contour ¬20.

Using the boundary condition in (17), the definition of p
n
, and the definition of M� in

(14), this becomes
2πM #

na

M�
a
H

a
¯ 2πM #

nb

M�
b
H

b
. (21)

Strictly speaking then, the fluid interface cannot be a surface of constant H since M
n

varies with latitude on such a surface. However, since the field strength is very much
larger than the magnetization for this dilute ferrofluid,

M�
a
H

a
EM�

b
H

b
, (22)

and the magnetic field strength is very nearly constant on the interface. Equation (20)
then implies that the interface does effectively lie on a geopotential given by a surface
of constant magnetic field strength, since it is a surface of constant pressure.

The neodymium–iron–boron magnet is nearly rectangular, 6.5¬4.7¬2.0 cm thick,
magnetized in the short direction. Contours of magnetic field strength, rH r, are shown
in figure 4(a), calculated by simulating the magnet as a large number of axisymmetric
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thin circular current loops. The experimental field was measured as a function of radius
at both of the poles and at the equator at four meridians to constrain the calculation.
The rectangular rather than cylindrical shape of the magnet means that longitude
variations of the magnetic field and therefore ‘gravity ’ are expected. These variations
were observed to fall off quickly with distance. In addition the measurements show that
the plaster ball is not quite centred on the dipole magnet. The effects of both on the
wave speed with longitude are discussed below. The calculations in figure 4 assume
cylindrical axisymmetry. Note that far from the magnet, the field falls off as a classic
dipole and the potentials

rH r£
(3 cos# θ1)"/#

r$
, (23)

where r is the distance from the dipole centre and θ is the latitude.
A non-geophysical effect of this ‘magnetic gravity ’ is that the magnitude and

direction of the gradient of the magnetic field (and thus the force) are latitude
dependent. This dependence is shown in figure 4(a) and detailed in figure 4(b) which
shows the magnitude of the field gradient, ¡rH r, as a function of latitude along the
three geopotentials of figure 4(a). Note that the innermost curve has a gradient
maximum off the equator, near the corner of the magnet. Near the magnet, the
potentials are oblate, while far away they are prolate as in (23). The magnet diameter-
to-height aspect ratio and plaster sphere size (dark circle in figure 4a) were chosen so
that the ferrofluid surface for each of the three depths used is near the centre contour
in figure 4(a) and has gradients shaped like the centre curve in figure 4(b). This is a
trade-off between sufficiently large gradient and magnetic forces which are nearly
spherically directed with small latitudinal amplitude variation. Finally, a topographic
β-effect from (3) is present in the experiment owing to the latitudinal variation of the
fluid layer depth. This effect will be relatively small in the equatorial region, and we
neglect it.

The experimental set-up is sketched in figure 2. Waves on the surface of the ferrofluid
are observed in profile by viewing the limb of the black ferrofluid spheroid against a
white background. The equator (³90° longitude plane) can be observed from the
bottom (side) using folded optics on the rotating table. The cylindrical Plexiglas
container of oil is surrounded by a square water bath for optical correction of the side
view. The index of refraction difference between the oil and water bath and the cylinder
curvature combine to give a focal length of about 190 cm so that, viewed from this
distance, the side view profile is indeed a plane that pierces the centre of the ferrofluid
spheroid perpendicular to the viewing direction. The bottom view through a flat plate
from a distance of about 220 cm is not corrected in the same way and thus the profile
corresponds to 3–4° south latitude depending on the ferrofluid depth. It will turn out
that both the amplitude and latitudinal extent of the waves are large enough that this
error is unimportant.

In the side-view photograph of figure 2(b), a very strong dipole magnet external to
the fluid tanks is attracting the ferrofluid away from around the plaster ball. The very
black ferrofluid limits measurements of wave height to profile views. Obviously, very
large-amplitude waves can be generated. The forcing is nonlinear, increasing quickly
with decreasing distance (i.e. ¡ ²equation (23)´) and depends intimately on the shape of
the imposed magnetic field and therefore on the size and aspect ratio of the forcing
magnet. For the following experiments, waves were generated by traversing the forcing
magnet in a straight line (along the square optical tank) at constant speed and height
in either the co-rotating direction (eastward) or counter-rotating (westward) direction.
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F 5. Sequence of south polar views of a wave on the ferrofluid spheroid. The wave is forced by
an external magnet travelling in a straight line parallel to the tops of the images. The three protruding
wires serve as image registration points for the video processing. The numbers count time in seconds.

An example polar view of such a wave is shown in the sequence of images in figure 5.
The external magnet moves along the top of the images from left to right. The forced
displacement height is symmetric in latitude about the equator with an approximately
Gaussian shape as discussed in §4.

3. Geophysical scaling

To first approximation, planetary-scale fluid dynamics consists of vertical hydro-
static balance and horizontal geostrophic balance. This ferrofluid experiment has also
been scaled to obey similar dynamics. The radii of the ferrofluid surface in the three
different depth experiments are 6.4, 7.2, and 8.5 cm, giving average fluid depths of 0.7,
1.5, and 2.8 cm. The waves are forced to amplitudes of about 1–2 cm and then allowed
to decay to zero. The horizontal (meaning along the magnetic geopotentials) scale is
larger than either wave height or fluid depth, since the excited waves have zonal
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wavenumber of order 3 or less. For these long waves and fluid depths D% 0.1λ so the
shallow-water approximation is appropriate. Comparing (17) to the usual derivation
of shallow-water wave equations (for example, Gill 1982, §5.6), the term M ¥H}¥z
serves as the gravity restoring force, ρ ¥Φ}¥z¯ ρg. An interesting difference is that this
force cannot be treated as independent of height as is normally done with g for
atmospheric and oceanic flows.

Again using the Bernoulli equation (19) but for points a and b located on the plaster
ball and the interface respectively,

p
a
®&Ha

!

MdH «¯ p
b
®&Hb

!

MdH «. (24)

Still neglecting p
c
in the boundary condition (17), these give

p
b
¯ p

m
¯®p

n
&Hb

Ha

MdH «

(25)

¯®p
n
®&D

!

M
dH

dz
dz«.

As shown above, the magnetic normal traction term is small, and near the equator,
where this study will focus, M, parallel to H, is oriented north–south, and M

n
and

therefore p
n
E 0 and will be ignored. Following the usual procedure for small surface

displacements, η, about the resting depth, D, the perturbation pressure, p«, is depth
independent in the hydrostatic approximation, and

p«¯M
D
(¡H )

D
η, (26)

where the subscript means the quantities are evaluated at height D above the plaster
ball. Thus correspondence to the usual shallow-water formulation is obtained with the
substitution of M

D
(¡H )

D
for ρg. In particular, the wave phase speed becomes

c¯ (M
D
(¡H )

D
D}ρ)"/#. (27)

Note that the very strong magnet required a large ferrofluid dilution in order to give
a sufficiently small magnetic force and therefore wave phase speed for equatorially
trapped waves. This dilution had the further advantage of reducing the viscosity of the
ferrofluid to approximately that of water, C 0.01 cm# s−".

An example of waves on the ferrofluid surface with no rotation (Ω¯ 0) is shown in
figure 6(a). The video camera view was of the south pole of the ferrofluid spheroid as
in figure 5. The forcing magnet moved in a straight horizontal line in the equatorial
plane along the flat optical box wall at a constant speed in first the westward and
then eastward direction. High-resolution video tape images were frame-grabbed to
computer memory at 0.3 s intervals as 8-bit intensity greyscales, and then the edge is
found via a contour routine. This nearly circular edge is converted to polar coordinates
and displayed as a radial displacement, η¯ r®r

!
, at each longitude �s. time where r

!
is the motionless average radius at each longitude from the first four images. The
resolution of this height-finding method is 0.1 pixel which is 3.7¬10−$ cm for this
shallow depth case. Longitude ®90° corresponds to the longitude of closest approach
of the forcing to the ferrofluid spheroid. Note that the maximum amplitude of the
forced wave occurs about 10° after the closest approach position due to the nonlinear
ferrofluid response. The wave then freely propagates and decays. The zonal wave speed
near the equator is roughly constant with longitude in figure 6(a) and is the same in
either direction, as expected for the non-rotating case. These waves are not confined to
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F 6. Contours of displacement height, r®r
!
, near equator for shallow depth case as a function

of longitude and time. The video frames of the south polar view are grabbed at 0±3 s intervals.
Contours asre shown at ³1,³2,³4,³8,…pixels with 1 pixel¯ 0±037 cm depth. (a) Ω¯ 0, r

!
is the

average of the first four images. At tE 2 s westward forcing, at tE 30 s eastward forcing. (b)
Ω¯ 2±0 s−", ε

m
¯ 39, r

!
is the average of the first ten images. At tE 5 s eastward forcing, at tE 30 s

westward forcing.

the ‘ tropics ’ but were observed to propagate over the entire fluid spheroid. The
increase in wave amplitude near longitude 90° is a consequence of constructive
interference of ray paths around the equator and over the poles.

With the addition of rotation, the wave motions are no longer symmetric in the
eastward (co-rotating) and westward (counter-rotating) directions. In figure 6(b)
Ω¯ 2.0 s−" and the eastward wave propagates freely while the westward wave does
not. The forcing speed is tuned to be about that of the expected eastward Kelvin wave,
C c from (27). As expected, this wave only propagates to the east. From the measured
zonal phase speed in figure 6(b), c

m
¯ 4.1 cm s−", the ‘measured’ Lamb parameter

ε
m

¯ 39. Even at this intermediate value, the wave dynamics is that of the equatorial
β-plane. The predicted Lamb parameter using the predicted magnetic gravity wave
phase speed, c, of (27) is somewhat difficult to determine owing to the sensitivity of
c to the difficult-to-measure magnetic field strength and gradient. As shown below,
c" c

m
and therefore ε! ε

m
, but differ by factor of 2 or less.

Longuet-Higgins (1968, referred to herein as L-H) gives analytic approximations to
the full numerical solution to the Laplace tidal equations in the limits of large or small
Lamb parameter. While these experiments are not truly spherical as required by the
Laplace tidal equations, in the limit of large ε the fluid motions are predicted and
observed to be trapped at equatorial latitudes where the magnetic potentials and
resultant force (figure 4) is nearly spherically symmetric. For large ε the waves are of
three types given in L-H §8. The low-frequency and low-zonal-wavenumber waves
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correspond to the solutions on the equatorial β-plane with the latitude coordinate
written ξ¯ ε"/% sin θ where θ is the latitude in L-H, or ξ¯ y}L

eq
where y is the

northward coordinate on the equatorial β-plane (in Philander 1990, §3.4, for example).
For large ε, the L-H type 3 eastward wave (Kelvin wave) has the form

u£
2ε$/%

n
e−ξ#/# ei(nθ−ωt), �£ iξ e−ξ#/# ei(nθ−ωt), η£

2ε$/%

n

D

c
e−ξ#/# ei(nθ−ωt) (28a–c)

(L-H equations 8.40–8.42). In the equatorial β-plane limit, εU¢, (28) become the
standard equatorial Kelvin wave with Gaussian u and η, and �U 0 (Philander 1990,
equation 3.48). The waves have a dispersion relation (L-H equation 8.38) :

ω}k¯ c(1"

%
ε−"/#), (29)

where n¯kR. For εU¢, (29) reduces to non-dispersive Kelvin waves travelling at the
shallow-water wave speed, (27) for this ferrofluid system. The westward solutions of
type 2 in L-H are the Rossby waves on the equatorial β-plane (L-H equations
8.35–8.37) :

u£
2m1

2n
ε"/% e−ξ#/# 0Pm−"

(ξ)®
1

2m2
P
m+"

(ξ)1 ei(nθ−ωt), (30a)

�£®i e−ξ#/#P
m
(ξ) ei(nθ−ωt), (30b)

η£®
2m1

2n
ε"/% e−ξ#/# 0Pm−"

(ξ)
1

2m2
P
m+"

(ξ)1 ei(nθ−ωt) (30c)

(alternatively Philander 1990, equations 3.33 and 3.36) where P
m

is the Hermite
polynomial of degree m. In effect m is the meridional mode number as n is the zonal
mode number. The zonal dispersion relation for these waves is

ω

k
¯®

c

2m1
, (31)

so that they travel to the west at "

$
, "

&
, "

(
, etc. of the Kelvin wave speed.

This ferrofluid system is qualitatively similar except for the latitude dependence of
‘gravity ’ and the not quite spherical geopotentials. The eigenfunctions of the
equivalent Laplace tidal equations for the magnetic geopotentials could be found in the
same way as in L-H, but is beyond the scope of this paper. For sufficiently large
rotation and therefore ε, the extratropical dynamics can be ignored since waves are
trapped at the equator. The decrease of ¡ rH r with increasing latitude in figure 4(b)
does imply a decrease of wave phase speed with latitude which is compensated
somewhat by the increase of ferrofluid depth with increasing latitude. In the WKB
sense wave rays are therefore refracted away from the equator. In these experiments the
equatorial trapping of wave energy with increasing ε must overcome this anti-
waveguide effect as well. These experiments have Lamb parameters from order 1 to
320. At low ε the meridional structure and speed of the waves can be at least
qualitatively compared to the L-H solutions of the Laplace tidal equations. For large
enough ε, we expect correspondence to (28)–(31). From figure 4(b) for latitudes within
³20° of the equator, the force is constant with latitude to within 5% and thus the
speed is constant to within 3%. An equatorial Rossby radius of 20° corresponds to
ε¯ 73. For the largest Lamb parameter of the experiments, ε

m
E 320, the Rossby

radius is 13.7° and the term e−ξ#/# in (28) and (30) falls to 0.35 at 20° latitude. In
addition, the error in phase speed by neglecting the last term in (29) is only about 1%
for εE 320. Thus the equatorial latitudes in these experiments at large Lamb
parameter should still be well modelled by the equatorial β-plane approximation.
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F 7. Contours of displacement height from a side view of the medium depth case as a function
of latitude and time. Forcing is eastward in all cases. Latitude ®90° is the south pole, 0° is the equator
on the right limb, 90 and ®270° is the north pole, and ®180° is the equator on the left limb.
Contours are shown at ³1,³2,³4,³8,…pixels with 1 pixel¯ 0±039 cm depth. (a) Ω¯ 0±5 s−",
ε
m

¯ 7±1; (b) Ω¯ 1±0 s−", ε
m

¯ 29; (c) Ω¯ 2±0 s−", ε
m

¯ 114.
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4. Experimental results

The trapping of wave energy near the equator for rotationally dominated flows is
demonstrated in figure 7. In this medium-depth case D¯ 1.5 cm, R¯ 7.2 cm, and Ω
increases from 0.5 to 1.0 to 2.0 s−" from 7(a) to 7(c). The video camera looks from the
side as in figure 2(b) and waves are generated with eastward forcing which is out of the
paper on the left side of figure 2. The grabbed frames are contoured and converted to
polar coordinates and again plotted as displacement amplitude r®r

!
at each latitude

as a function of time, where r
!
is the average of the first three frames. Again the height

resolution of the images is about 0.1 pixel or 3.9¬10−$ cm. In these plots latitude
®180° corresponds to the equator on the left limb (longitude of closest approach of
the forcing magnet), ®90° is the South pole, 0° is the equator on the right limb, and
90° or ®270° is the north pole where the Plexiglas rod interferes with the waves and
visualization. Using the measured phase speed at Ω¯ 2.0 s−", c

m
¯ 2.7 cm s−", the

Lamb parameter, ε
m
, is 7.1, 29 and 114 in the three cases.

Kel�in wa�es

In figure 7(a) at low ε, much of the wave signal travels over the poles as discussed above
in relation to the non-rotating case in figure 6(a). The three-dimensional ray paths are
ambiguous using this profile-viewing technique, but other experiments with a grid
projected onto the surface of the ferrofluid for visualization show that at low rotation
rates, the wave crests propagate to high latitudes and over the poles. In figure 7(c) for
ε
m

¯ 114, the surface height displacement propagates just zonally and disappears while
propagating across the near or far hemisphere. The height displacement is visible only
near the equator in this side limb view. The forced surface displacements are centred
on the equator and roughly Gaussian so that eastward forcing should couple strongly
to the freely propagating Kelvin wave (equation (28c)) at large Lamb parameter. For
ε¯ 114, the equatorial Rossby radius is about 18° which is roughly the half-width of
the forced wave in figure 7(c). After propagating both one-half and one revolution of
the spheroid, the travelling wave is somewhat broader latitudinally, probably owing to
friction, as discussed in more detail below. Westward forcing in the side-view
experiments with shallow and medium ferrofluid depths give no discernible propagating
free wave.

Combining the bottom view (zonal projection) at moderate Lamb parameter of
figure 6(b) with the side view (meridional projection) at larger ε of figure 7(c) gives a
picture of an equatorially trapped Kelvin wave propagating to the east. This eastward
wave appears non-dispersive in both projections. The eastward wave in the zonal
projection has a steep front with high zonal wavenumber but with little or no
dispersion as it travels around the spheroid. The non-dispersive, eastward-only phase
speed and meridional wave-height profile are consistent with the Kelvin wave given by
(28) travelling at phase speed given by (29).

Equation (29) predicts that the zonal phase speed is just the shallow water wave
speed of (27). This prediction can be compared to these measurements of eastward
Kelvin waves at large ε. The shallow-water phase speed depends on fluid depth as D"/#

in the usual way as well as inversely to a higher power of R through both (¡H )
D

and
M

D
. Thus for small depth the phase speed increases with depth as D"/#, but for larger

depths the terms ¡HC (R®R
!
)−% and M¯L²H ´CL²(R®R

!
)−$´ dominate. This

dependence of H on R based on (23) is only approximate in the near field of the magnet
where the field actually falls off faster than for a dipole.
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F 8. Predicted and measured zonal phase speed as a function of ferrofluid depth at the
longitudes of maximum (——, predicted; E, measured) and minimum (– – –, D) depth which are
different owing to miscentring of the plaster spheroid on the magnet. Predicted speed is from (27)
based on measurements of magnetic field and ferrofluid strength.

The measurements of field �s. depth mentioned above were used to calculate H and
¡H as a function of depth and radius at four longitudes around the plaster ball. M

s

was found using the measured density and the fit in figure 3(b) and then M as a
function of ferrofluid depth using (11) with the fit parameters from figure 3(a). The
resulting prediction for c for two longitudes is shown in figure 8. The magnet and
plaster ball centres are displaced horizontally about 0.2 cm along the direction of the
two longitudes shown in figure 8. The ferrofluid surface lies along a magnetic potential
surface which is displaced by the same amount so that the fluid depth also varies as a
function of longitude. The ferrofluid depths and thus the speeds shown are the
extremes for a given ferrofluid volume. The three measured average Kelvin wave
speeds for the three ferrofluid depth experiments are also plotted �s. the minimum and
maximum measured depths in figure 8. The measured speed is smaller by of order 30%
than that predicted by (27) for the two larger fluid depths. This corresponds to a
difference of 50% in the Lamb parameters, ε

m
and ε, based on the two wave speeds.

While not in quantitative agreement for all the fluid depths, the data and predictions
are consistent in some important ways. Quantitatively, the phase speed prediction
depends sensitively on the measurements of H and particularly ¡H. To get a
continuous prediction with depth, Hall probe measurements of H �s. distance from the
plaster sphere were fit with a polynomial which was differentiated to get ¡H. These
measurements are most critical to the phase speed prediction and unfortunately are the
most susceptible to systematic errors. The counter-intuitive decrease of travelling wave
speed with increasing ferrofluid depth for this shallow-water wave system is verified in
the experiments. Furthermore, even though the depth of the ferrofluid varies with
longitude for a given experiment, the measured speed does not (e.g. figure 6b and figure
9a). In figure 8 the predicted maximum and minimum speeds are nearly equal for a
given ferrofluid volume if the depth difference at the two longitudes is about 0.5 cm for
depths above 1 cm. In other words even though the depth varies with longitude due to
misplacement of the magnet within the plaster ball, the larger magnetic gravity at
smaller depth almost exactly compensates and the speed given by (27) remains constant
with longitude, consistent with the experimental result.
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F 9. Contours of displacement height, r®r
!
, near the equator for the deep case as a function

of longitude and time. Ω¯ 2±0. (a) Eastward forcing at about the Kelvin wave speed. (b) Westward
forcing at same speed as in (a). (c) Westward forcing at 0±44 times the speed of (b). The eastward line
(– – –) has c

m
¯ 1±86 cm s−" so ε

m
¯ 330. The lines [[[, – – –, and –[–[ correspond to westward

speeds which are "

$
, "

&
, and "

(
of c

m
, respectively.

Rossby wa�es

At large ε, or equivalently on the equatorial β-plane, we also expect westward-
propagating Rossby waves with the form given by (30) travelling at phase speed given
by (31). The latitudinal structure is given by Hermite polynomials within a Gaussian
envelope. The lowest mode, m¯ 1, has a height signal which is symmetric about the
equator with maxima off the equator and a local minimum, but still positive, height on
the equator. This mode should couple most strongly to the imposed roughly
Gaussian height anomaly. This m¯ 1 (the gravest equatorial Rossby) mode also has
the fastest phase speed, 1}3 that of the Kelvin wave. The next mode is antisymmetric
in height about the equator.



54 D. R. Ohlsen and P. B. Rhines

10.0

1.00

0.10

0.01
10 20 30 40 50 60 70

Time (s)

A
m

pl
it

ud
e

n=1

n=2

n=3

n=4

F 10. Amplitude of the lowest four zonal wavenumber components of the Kelvin wave in figure
9(a) as a function of time. The uppermost straight line is a fit to the n¯ 1 amplitude and gives a decay
time of 43 s. The other straight lines are guides and have decay times of 4, 9, and 16 times 43 s.

For the deep ferrofluid layer experiments, the bottom drag is smaller and the
ferrofluid surface is nearer to the forcing so that large waves which propagate a few
times around the spheroid are possible. In figure 9(a) with Ω¯ 2±0 s−" the height signal
�s. longitude and time shows a Kelvin wave which travels around the spheroid more
than twice. For this deep layer experiment c

m
is measured to be 1±86 cm s−" and

therefore ε
m

¯ 330. The height resolution of 0±1 pixel now corresponds to 4±4¬10−$ cm.
As in the shallow depth case, the largest forcing amplitude occurs downstream of the
forcing magnet’s closest approach longitude. The wave appears non-dispersive,
however the zonal wavenumber of the freely propagating wave is dominated by n¯ 1
after the forcing dies out (see also figure 10). Thus different speeds for different zonal
modes would be difficult to detect. The phase speed of this wave is constant during the
lifetime shown. The wave signal follows a line of constant slope and therefore velocity
(1±86 cm s−") which is drawn onto the contour plot.

In figures 9(b) and 9(c) the forcing is westward at the same rotation rate. The forcing
in figure 9(b) is at the same speed as in figure 9(a) and is just over twice that of figure
9(c). In figure 9(b), a small eastward Kelvin wave is still generated but now some
westward propagation is visible as well. In figure 9(c) the slower forcing generates a
Kelvin wave with yet smaller amplitude and couples better to the slower westward-
propagating wave. This behaviour is reminiscent of simple numerical results of the
release of a height perturbation on the equator and the subsequent generation of both
eastward Kelvin and westward Rossby waves (Philander 1990 for example). Figures
9(a) and 9(c) are the laboratory analogues of recent sea surface height anomaly
observations of Kelvin and Rossby waves in the Equatorial Pacific measured by Seasat
(Delcroix et al. 1991, figures 6 and 8) and TOPEX}POSEIDON (Chelton & Schlax
1996, figure 3).

In figures 9(b) and 9(c), lines with slopes equal to "

$
, "

&
, and "

(
of the measured Kelvin

wave speed in figure 9(a) are shown for reference. These speeds correspond to the first
three Rossby modes (equation (31) with m¯ 1, 2, and 3). Based on latitude profiles of
the forcing, we expect to generate the gravest Rossby mode with speed "

$
of the Kelvin

mode. The data seem to better support a phase speed of "

&
or "

(
of the Kelvin mode. The

discrepancy is probably due to the viscosity of the ferrofluid and especially the silicone
oil bath.
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Since the ferrofluid is a suspension of particles in a carrier fluid and these particles’
orientation depends on the external magnetic field, H, it is expected that the viscosity
depends on both the magnitude and direction of H. Rosensweig (1985) considers a
ferrofluid in a plane Couette shear flow with an applied magnetic field. If the vortical
rotation timescale in the fluid flow is much larger than the particle rotation time
(τ# 10−' s) as in these experiments, then the increase in fluid viscosity due to the
magnetic field is

∆ν

ν
¯

MHτ}4νρ

1MHτ}6νρφ
sin#γ (32)

(Rosensweig 1985, from equation 8.100) where φ is the volume fraction of the magnetic
particles in the ferrofluid and γ is the angle between the fluid vorticity and the magnetic
field. If we estimate φ from the relation, φ¯M

s
}M

d
, where M

d
is the bulk

magnetization of the magnetite particles (C 400 Gauss}4π), then φC 0±0015 and
∆ν}ν! 0±002 sin#γ. This effect is thus very small even in the case where the vorticity
and field are perpendicular and can be ignored for this very dilute ferrofluid.

The effects of the usual fluid viscosity on the equatorial Kelvin wave can be explored
with a very simple model in which the Gaussian latitude dependence is assumed
unchanged. A term ν~#u included in the xW -momentum equation (�¯ 0) leads to a
complex frequency ω along the equator (y¯ 0) of

ω¯®
i

τ


nc

R 91®0 R

τnc1
#:"/#, (33)

where
1

τ
¯

ν

2R#

(n#ε"/#). (34)

Thus the wave ampitude decays like e−t/τ and the zonal phase speed has a correction
factor multiplying the shallow-water wave speed:

ω

k
¯ c 91®0 R

τnc1
#:"/#. (35)

In figure 10 the amplitudes of the first four zonal wavenumber components of the
deep-layer Kelvin wave in figure 9(a) are shown as a function of time. The linear fit on
the semi-log plot for the n¯ 1 wave gives a decay time of 43 s. Using these quantities
in (34) along with R for the deep case and the Lamb parameter, ε

m
, determined from

the measured wave speed gives a viscosity of 0±18 cm# s−". This is a factor of at least
3 larger than any fluid in the experiment and indicates that the assumption that the
spatial structure does not change is not a good one. Similarly, for the Lamb parameter
of this experiment, (34) predicts essentially no difference in τ for the n¯ 1 and n¯ 2
modes since the ε"/# term dominates n#. However, in figure 10, rather than staying
constant, the decay times go down like n# for early times, again indicating that the
latitudinal structure is not constant.

Using the 43 s decay time in (35) anyway to determine a correction for the predicted
phase speeds of figure 8 gives a modification factor of 0±99 or essentially no change.
Since the spatial structure is observed to change in figure 7 where the Kelvin mode
broadens in latitude, and the decay times are much faster than this simple model
predicts, we expect that a solution to the problem with spatial variations intact is
required. Such a solution is not particularly interesting from a geophysical point of
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view even if done on the equatorial β-plane. For the full experimental geometry, it is
even more complicated. Instead we simplistically conclude that the smaller spatial
scales of the Rossby waves give smaller decay times (as observed in comparing figures
9a and 9c), and that they retard the phase speed of the waves more than the Kelvin
waves by an unknown but perhaps insignificant amount. The smaller meridional scale
of the Rossby waves implies even more spatial broadening owing to viscosity so that
a correspondingly larger correction to the phase speed seems reasonable. A much
better solution to resolving the discrepancy between the observed Rossby wave speed
of about "

&
the Kelvin wave speed for what is likely the lowest Rossby mode (for which

we expect "

$
) is to lower the viscosity of the oil bath and}or increase the size of the

apparatus.

5. Conclusions

The theoretical construct of the equatorial β-plane has been successful in modelling
observations of tropical waves in the atmosphere and ocean. The Kelvin and Rossby
waves predicted to exist in this system have been observed in this laboratory
experiment. While the observational, numerical and theoretical basis for the existence
of these waves is formidable, until this set of experiments, study of this system in the
laboratory had not been achieved. On a broader level, the spherical geometry of these
experiments demonstrates the utility of ferrofluids and their extra body force for the
generation of potential vorticity gradients which are not totally constrained by
terrestrial gravity’s flat geopotentials on laboratory scales. Much progress has been
made using laboratory experiments which can simulate limited aspects of the full scope
of geophysical fluid dynamics (i.e. a thin shell of stratified fluid flowing on a rotating
sphere, driven by surface stresses and differential heating). With ferrofluids whole new
classes of laboratory experiments aimed at understanding GFD become possible.

The most obvious limitation to this study of free-surface spherical shallow-water
waves is the viscous damping imposed by the oil bath. For related experiments an easy
but not inexpensive improvement would be to use Dow Corning’s 0±0065 rather than
0±05 cm# s−" viscosity silicone oil. In addition, the magnetic force on the ferrofield is
sufficiently strong that less-dilute ferrofluid could be used with larger magnets to give
similar forces in larger geometries. The magnet and therefore the spheroid size can be
scaled up by a factor of three while still giving similar field strengths and gradients or
by a larger factor by going to smaller fields and less-dilute ferrofluid. This increase in
size would reduce the viscous effects by an order of magnitude. Surface tension effects
would also be reduced for larger experiments.

Using a less-viscous fluid system allows laboratory study of a wider range of
geophysical flows in this nearly spherical geometry. Kelvin waves can be trapped to
coastlines rather than just the equator. These trapped waves decay exponentially in the
offshore direction with a lengthscale of the Rossby radius, L

r
¯ c}f. For larger

geometries this lengthscale can be sufficiently small that studies of equatorial waves in
ocean basins which may scatter into coastal Kelvin waves as they strike the eastern
ocean boundary, or studies of such waves as they propagate and scatter through island
archipelagoes become possible. In the ocean these waves are the first few baroclinic
modes and have decay scales which are of order 1}100 or less of the basin width. In
a 20 cm radius homogeneous ferrofluid experiment the waves would be barotropic
surface waves but with nearly as small a decay scale compared to the basin size. If
cC 2 cm s−", and L

r
or island sizes areC 2 cm then the Reynolds number is order 400

and viscous effects would not be dominant. Such ocean basin experiments would still
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be limited by non-geophysical viscous and surface tension effects for smaller-scale
waves or topography and by the non-spherical geopotentials at high latitudes.
However, large-amplitude waves are easy to generate and these experiments would
have the advantage of being fully nonlinear three-dimensional real fluid systems rather
than numerical or theoretical models.

Experiments which are not motivated by geophysical fluid dynamics but by
geometrical constraints are possible in this nearly spherical geometry. For example a
channel formed by continents at about ³10° or 20° latitudes would have true periodic
boundary conditions in the wave propagation direction. This geometry is standard for
many theoretical models of wave propagation and solitons but is difficult ex-
perimentally. For capillary gravity waves for example, a standard annulus has different
length sidewalls and corresponding curvature effects which complicate the surface
tension terms. In this ferrofluid system the curvature would instead be in the ‘gravity ’
direction. Similarly, capillary–gravity waves on the full sphere could be studied,
without boundaries or contact angle complications. In particular, an oscillating
magnetic field produced by an internal electromagnet would give an oscillating body
force which might allow Faraday waves on a surface with no sidewall effects.

We have constructed ferrofluid stratifications by dilution in a number of quasi-
spherical and flat geometries. From figure 3(b) this gives a stratification in both density
and magnetization. The elimination of terrestrial gravity from the dynamics depends
on having a uniform density throughout the fluids so spherical stratified experiments
are not possible without free-fall or Earth orbit. Otherwise, both gravity and the
magnetic body forces act inside the fluid. A stratification of the ferrofluid used in this
study in a magnetic field with a strength gradient of about 20 Gauss cm−" would have
the same magnetic buoyancy frequency as gravitational buoyancy frequency. Stronger
field gradients mean that the magnetic body force dominates and experiments with
stratified dynamics whose geopotentials are not all parallel as in figure 1( f ) become
possible. Such a geometry would make a true stratified β-plane with the addition of
planetary rotation. Very large field gradients with simple magnetic shapes implies small
sizes and concurrent viscous effects so the geophysical applications may be limited. In
addition, the fluid is very black and so internal dynamics are experimentally difficult
to visualize. We have demonstrated the direct sensing of local M variations via
inductance and in situ field strength measurements, and ultra-sound techniques may be
feasible, but much work remains.

The continued motivation for conducting laboratory experiments in the light of the
advances being made in numerical techniques and hardware remains the large three-
dimensional dynamical ranges and evolution times available for some laboratory
problems compared to numerical models. Carefully scaled laboratory experiments
using ferrofluid may offer many new possibilities and geometries for studies of
geophysical fluid dynamics. The recent availability of inexpensive ferrofluid (about $10
a litre for these experiments) now makes such experiments practical.

The experiments were conducted in the Geophysical Fluid Dynamics Laboratory at
the School of Oceanography, University of Washington, which is partially supported
by the Office of Naval Research. D.R.O. was supported by ONR grant N00014-90-J-
1477 and NSF grant OCE-94-16661. P.B.R. was supported by ONR grant N00014-92-
J-1405 and NSF grant OCE-93-01819. We thank Eric Lindahl for construction of the
plaster spheroid and for assistance in conducting the experiments. The image
processing was done using equipment in John E. Hart’s GFD laboratory at the
University of Colorado. We thank Ronald Rosensweig of Exxon Corp, for assistance



58 D. R. Ohlsen and P. B. Rhines

with obtaining and characterizing ferrofluids. We acknowledge helpful conversations
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REFERENCES

A, M. A., B, E. W. & B, F. H. 1986 Convection driven by centrifugal buoyancy in
a rotating annulus. Geophys. Astrophys. Fluid Dyn. 34, 301–317.

B, D. J. & R, A. R. 1969 A laboratory model for the general ocean circulation. Phil.
Trans. R. Soc. Lond. A 265, 533–566.

B, V. G., B, B. M. & V, A. N. 1988 Introduction to Thermomechanics of
Magnetic Fluids. Hemisphere.

C, C. R. & B, F. H. 1983 An experimental and theoretical investigation of the onset of
convection in rotating spherical shells. J. Fluid Mech. 126, 287–305.

C, R. W., P, J. & C, S. W. 1978 Measurements of particle size
distribution parameters in ferrofluids. IEEE Trans. Magnetics MAG-14(5), 975–977.

C, D. B. & S, M. G. 1996 Global observations of oceanic Rossby waves. Science 272,
234–238.

C  V, A. 1979 Mean flow generation by topographic Rossby waves. J. Fluid Mech.
94, 39–64.

D, T., P, J. & E, G. 1991 Equatorial Kelvin and Rossby waves evidenced in the
Pacific ocean through geosat sea level and surface current anomalies. J. Geophys. Res. 96
(Suppl.), 3249–3262.

G, A. E. 1982 Atmosphere-Ocean Dynamics. Academic.

G, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.

G, R. W. & C, P. 1994 Laboratory experiments with mid-latitude circulation in a
two-layer ocean. Fourth Intl Symp. on Stratified Flows, Vol. 4. Institute de Me! canique de
Grenoble.

H, J. E. 1972 A laboratory study of baroclinic instability. Geophys. Fluid Dyn. 3, 181–209.

H, J. E., G, G. A. & T, J. 1986 Space-laboratory and numerical simulations of
thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173,
519–544.

H, J. R. 1992 An Introduction to Dynamic Meteorology, 3rd Edn. Academic.

I, A. & P, N. A. 1967 Some laboratory experiments on Rossby waves with
application to the ocean. Tellus 19, 81–88.

L-H, M. S. 1968 The eigenfunctions of Laplace’s tidal equations over a sphere. Phil.
Trans. R. Soc. Lond. A 262, 511–607 (referred to herein as L-H).

M, T. 1966 Quasi-geostrophic motions in equatorial areas. J. Metl. Soc. Japan 2, 25–43.

O, D. R. & H, J. E. 1989 The transition to baroclinic chaos on the β-plane. J. Fluid Mech.
203, 23–50.

P, S. G. 1990 El Ninh o, La Ninh a, and the Southern Oscillation. Academic.

P, N. A. 1966 The equations of motion for a shallow rotating atmosphere and the
‘ traditional approximation’. J. Atmos. Sci. 23, 626–628.

R, R. E. 1985 Ferrohydrodynamics. Cambridge University Press.

S, M. 1984 Survey of planetary scale traveling waves : the state of theory and observations. Re�.
Geophys. Space Phys. 22, 209–236.

S, H., A, B. B. & F, A. J. 1958 Some examples of stationary planetary flow
patterns in bounded basins. Tellus 10, 179–187.

T, G. I. 1921 Experiments with rotating fluids. Proc. R. Soc. Lond. A 100, 114–121.

W, J. A. 1975 Mean flow generated by circulation on a b-plane: an analogy with the
moving flame experiment. Tellus 27, 358–3644.


